Category Archives: BER Performance

Bit Error Rate performance as a function of Signal to Noise Ratio.

Low Density Parity Check Codes

We have previously discussed Block Codes and Convolutional Codes and their coding and decoding techniques particularly syndrome-based decoding and Viterbi decoding. Now we discuss an advanced form of Block Codes known as Low Density Parity Check (LDPC) codes. These codes were first proposed by Robert Gallager in 1960 but they did not get immediate recognition as they were quite cumbersome to code and decode. But in 1995 the interest in these codes was revived, after discovery of Turbo Codes. Both these codes achieve the Shannon Limit and have been adopted in many wireless communication systems including 5G.

Continue reading Low Density Parity Check Codes

Convolutional Codes and Viterbi Decoding

In the previous post we discussed block codes and their decoding mechanisms. It was observed that with syndrome-based decoding there is only a minimal advantage over the no coding case. With Maximal Likelihood (ML) decoding there is significant improvement in performance but computational complexity increases exponentially with length of the code and alphabet size. This is where convolutional codes come to the rescue.

Continue reading Convolutional Codes and Viterbi Decoding

Hamming Codes

We have previously discussed modulation and demodulation in wireless communications, now we turn our attention to channel coding. We know that in a wireless channel the transmitted information gets corrupted due to noise and fading and we get what are called bit errors. One way to overcome this problem is to transmit the same information multiple times. In coding terminology this is called a repetition code. But this is not recommended as it results in reduced data rate and reduced spectral efficiency.

Continue reading Hamming Codes

Modeling Phase and Frequency Synchronization Error

Carrier phase or frequency synchronization is a common problem in wireless communication systems. These two problems are interrelated as instantaneous frequency is just the rate of change of phase. The problem of carrier frequency offset might appear due to one of two reasons. Either the oscillators at the transmitter and receiver are not aligned in the frequency domain or there is a Doppler shift introduced by the channel (remember that a moving object in the wireless environment introduces a Doppler shift). In the case of the former the frequency misalignment is given in parts per million (ppm). A typical value for commercially available oscillators is ±20 ppm. Assuming that there is maximum frequency error at both the transmitter and receiver the error increases to ±40 ppm. At 1GHz this translates to 40*1,000,000,000/1,000,000 = 40kHz.

Continue reading Modeling Phase and Frequency Synchronization Error

MSK Demodulation Using a Discriminator

It is widely believed that performance of non-coherent receivers is much worse than performance of coherent receivers in terms of Bit Error Rate (BER). Although this is true to some extent but as we show in this post the difference in performance is not that much in case of Minimum Shift Keying (MSK). In fact, there is only a difference of about one dB in an AWGN environment at high Signal to Noise Ratios (SNR). The difference is somewhat larger in flat fading environment but given the simplicity of implementation of a non-coherent receiver the trade-off might be worth it.
Continue reading MSK Demodulation Using a Discriminator

Orthogonal Minimum Shift Keying (OMSK)

Some Background

Before we delve deep into Minimum Shift Keying (MSK) and its performance in presence of co-channel interference the reader is advised to look at the following posts.

Post 1 – MSK BER performance in AWGN and flat fading environment when viewed as extension of BPSK

Post 2 – MSK Power Spectral Density and its BER performance in AWGN when viewed as a CPM

Post 3 – MSK BER Performance in AWGN and flat fading environment when viewed as a CPM

Co-channel interference is a phenomenon widely encountered in wireless communication systems and the main reason for that is frequency reuse, which allows the same frequency band to be used over and over again in geographically non-contiguous areas. GSM and other wireless communication systems, using MSK modulation, suffer from the same problem. This has been widely studied in the literature and interference rejection techniques have been proposed. The worst case is one where the power of both the signals (wanted signal and interference) is almost the same and there is no frequency or phase offset. 
Continue reading Orthogonal Minimum Shift Keying (OMSK)

MSK Bit Error Rate in Rayleigh Fading

I - In the previous two posts we discussed MSK performance in an AWGN channel, first presenting the MATLAB/OCTAVE Code for one sample per symbol case [Post 1], and then extending it to the more general case of multiple samples per symbol [Post 2]. This helps us visualize the underlying beauty of Continuous Phase Modulation (CPM) which reduces out of band energy and consequently lowers Adjacent Channel Interference (ACI). We also briefly touched upon the case of MSK in Rayleigh fading, but did not go into the details. So here we take a deeper dive.
Continue reading MSK Bit Error Rate in Rayleigh Fading

MSK – A Continuous Phase Modulation (CPM)

Some Background on MSK

I – In the previous post we presented the mathematical model and code for BER calculation of a popular modulation scheme called MSK. However in the code we shared, we only considered one sample per symbol, which makes MSK look like BPSK. While BPSK symbols fall on the real axis, MSK symbols alternate between real and imaginary axes, progressing by π/2 phase during each symbol period. MSK signal thus has memory and this can help in demodulation using advanced techniques such as Viterbi Algorithm. 
Continue reading MSK – A Continuous Phase Modulation (CPM)

Minimum Shift Keying Bit Error Rate in AWGN

I - Minimum Shift Keying (MSK) is a type of Continuous Phase Modulation (CPM) that has been used in many wireless communication systems. To be more precise it is Continuous Phase Frequency Shift Keying (CPFSK) with two frequencies f1 and f2. The frequency separation between the two tones is the minimum allowable while maintaining orthogonality and is equal to half the bit rate (or symbol rate, as both are the same). The frequency deviation is then given as Δf=Rb/4. The two tones have frequencies of fc±Δf where fc is the carrier frequency. MSK is sometimes also visualized as Offset QPSK (OQPSK) but we will not go into its details here. 
Continue reading Minimum Shift Keying Bit Error Rate in AWGN

Pulse Amplitude Modulation Symbol Error Rate in AWGN

Pulse Amplitude Modulation (PAM) is a one dimensional or in other words real modulation. Simply put it is an extension of BPSK with M amplitude levels instead of two. This can be a bit confusing because BPSK can be looked at as a phase modulation and its natural extension must be QPSK or 8-PSK modulations. To remove this ambiguity lets call M-PAM an extension of simple amplitude modulation but with M levels. In the discussion below we consider M=4 but then extend it to the general case of M=2k (k=1,2,3…).

Continue reading Pulse Amplitude Modulation Symbol Error Rate in AWGN