Tag Archives: mmwave

5G Millimeter Waves: Are They Really Harmful

There has been a continuous debate about harmful effects of Electromagnetic Radiations ever since they came into existence. Most of the research results suggest that there are no harmful effects, if the rules and regulations are followed. But there is a small body of research that suggests that there might be some harmful effects and more research needs to be carried out. This is particularly important now as 5G Wireless Technology is being rolled out around the world and it uses millimeter waves for which we have limited data. Also, 5G would be using much smaller cells meaning that base stations would be closer to human beings.

Continue reading 5G Millimeter Waves: Are They Really Harmful

60 GHz Millimeter Wave Band – Seems Like a Free Lunch

Let us start by first listing down the advantages of the 60 GHz Millimeter Wave Band, a band spread between 57 GHz and 64 GHz. This unlicensed band was first released in the US in 2001 but with limited allowance for transmit power (EIRP of 40 dBm). Later on, in 2013, this limit was increased to allow for greater transmit power (EIRP of 82 dBm) and larger range. The higher EIRP can be achieved with an antenna gain of 51 dBi or higher (EIRP is simply the product of transmit power and antenna gain). But first the advantages:

  1. Unlicensed band means you do not have to pay for using the frequencies in this band.
  2. Wide bandwidth of 7 GHz allows high data rate transmissions. Remember Shannon Capacity Theorem?
  3. High atmospheric absorption resulting in greater path loss (up to 20 dB/km) and shorter range. This means lesser co-channel interference and higher reuse factor.
  4. Smaller antenna sizes allowing for multiple antennas to be put together in the form of an array providing high gain.
  5. This band is quite mature and electronic components are cheap and easily available.
Continue reading 60 GHz Millimeter Wave Band – Seems Like a Free Lunch

Path Loss at Millimeter Wave Frequencies

The mmWave Channel

It is well known that wireless signals at millimeter wave frequencies (mmWave) suffer from high path loss, which limits their range. In particular there are higher diffraction and penetration losses which makes reflected and scattered signals to be all the more important. Typical penetration losses for building materials vary from a few dBs to more than 40 dBs [1]. There is also absorption by the atmosphere which increases with frequency. But there are also some favorable bands where atmospheric losses are low (<1dB/km).

Continue reading Path Loss at Millimeter Wave Frequencies

Multicarrier Beamforming at mmWave

Some Background

We have previously discussed beamforming for single carrier signals. Now we turn our attention to multicarrier signals particularly at mmWave where the bandwidths are two orders of magnitude (100x) higher than at sub 6GHz band. We want to investigate that whether there is any distortion in the array response due to high signal bandwidths at mmWave.

But let us start with the case that we have discussed so far i.e. 1GHz single carrier case and a Uniform Linear Array (ULA). We then add two other carriers at 1.2GHz and 0.80GHz, quite an extreme case, stretching the bandwidth to 400MHz. Antenna spacing is still λ/2=0.15m corresponding to the center frequency of 1GHz.

Continue reading Multicarrier Beamforming at mmWave