Category Archives: Standards

GSM, WCDMA, LTE, 5G.

MIMO, SIMO and MISO Capacity in AWGN and Fading Environment

In a previous post we had discussed MIMO capacity in a fading environment and compared it to AWGN capacity. It sometimes feels unintuitive that fading capacity can be higher than AWGN capacity. If a signal is continuously fluctuating how is it possible that we are able to have reliable communication. But this is the remarkable feature of MIMO systems that they are able to achieve blazing speeds over an unreliable channel, at least theoretically. It has been shown mathematically that an NxN MIMO channel is equivalent to N SISO channels in parallel.

Continue reading MIMO, SIMO and MISO Capacity in AWGN and Fading Environment

Fundamentals of Direction of Arrival Estimation

Direction of Arrival (DOA) estimation is a fundamental problem in communications and signal processing with application in cellular communications, radar, sonar etc. It has become increasingly important in recent times as 5G communications uses DOA to spatially separate the users resulting in higher capacity and throughput. Direction of Arrival estimation can be thought of as the converse of beamforming. As you might recall from the discussion in previous posts, in beamforming you use the steering vector to receive a signal from a particular direction, rejecting the signals from other directions. In DOA estimation you scan the entire angular domain to find the required signal or signals and estimate their angles of arrival and possibly the ranges as well.

Continue reading Fundamentals of Direction of Arrival Estimation

5G Data Rates and Shannon Capacity

Recently I came across a post from T-Mobile in which they claim to have achieved a download speed of 5.6 Gbps over a 100 MHz channel resulting in a Spectral Efficiency of more than 50 bps/Hz. This was achieved in an MU-MIMO configuration with eight connected devices having an aggregate of 16 parallel streams i.e. two parallel streams per device. The channel used for this experiment was the mid-band frequency of 2.5 GHz.

Continue reading 5G Data Rates and Shannon Capacity

5G Rollout in the USA: Long Way to Go

There is a 3 way race for 5G leadership in the US between T-Mobile(+Sprint), Verizon and AT&T. There are competing claims for the number of 5G subscribers, coverage area and download speeds. But let us look where the 5G industry stands today compared to the expectations a few years back. More than 80% of US population lives in urban areas which comprise of 2% of the total land area of about 10 million squared kilometers. That is 80% of the population lives in an area of about 200,000 squared kilometers.

Continue reading 5G Rollout in the USA: Long Way to Go

5G Millimeter Waves: Are They Really Harmful

There has been a continuous debate about harmful effects of Electromagnetic Radiations ever since they came into existence. Most of the research results suggest that there are no harmful effects, if the rules and regulations are followed. But there is a small body of research that suggests that there might be some harmful effects and more research needs to be carried out. This is particularly important now as 5G Wireless Technology is being rolled out around the world and it uses millimeter waves for which we have limited data. Also, 5G would be using much smaller cells meaning that base stations would be closer to human beings.

Continue reading 5G Millimeter Waves: Are They Really Harmful

Low Density Parity Check Codes

We have previously discussed Block Codes and Convolutional Codes and their coding and decoding techniques particularly syndrome-based decoding and Viterbi decoding. Now we discuss an advanced form of Block Codes known as Low Density Parity Check (LDPC) codes. These codes were first proposed by Robert Gallager in 1960 but they did not get immediate recognition as they were quite cumbersome to code and decode. But in 1995 the interest in these codes was revived, after discovery of Turbo Codes. Both these codes achieve the Shannon Limit and have been adopted in many wireless communication systems including 5G.

Continue reading Low Density Parity Check Codes