Category Archives: Fundamentals

The basic building blocks.

What is Energy Harvesting

Conventional battery powered systems can be impractical, expensive, or have negative environmental impacts. Energy harvesting (EH) offers a potential solution to these problems. Through ambient sources such as solar, vibrational, thermal, and RF, self-sustaining IoT devices can be designed. These devices can be easily implemented in wearables, medical implants, and infrastructure. Companies such as TI and ADI have developed power management systems for EH and consumer products already exist. These products continue to increase in efficiency and practicality every year.  

Continue reading What is Energy Harvesting

Pulse Amplitude Modulation Symbol Error Rate in AWGN

Pulse Amplitude Modulation (PAM) is a one dimensional or in other words real modulation. Simply put it is an extension of BPSK with M amplitude levels instead of two. This can be a bit confusing because BPSK can be looked at as a phase modulation and its natural extension must be QPSK or 8-PSK modulations. To remove this ambiguity lets call M-PAM an extension of simple amplitude modulation but with M levels. In the discussion below we consider M=4 but then extend it to the general case of M=2k (k=1,2,3…).

Continue reading Pulse Amplitude Modulation Symbol Error Rate in AWGN

Beyond Massive MIMO

Recently Björnson and Marzetta in their publication on Antenna Arrays [1] discussed five possible future research directions. In their opinion Massive MIMO is no longer a theoretical concept and it is already being adopted in the industry. It is not uncommon to find 64 element antenna arrays being deployed in wireless communication systems. So we now need to look beyond Massive MIMO or MaMIMO as it is popularly referred to. Here are three possible future research directions that we find most interesting.

Continue reading Beyond Massive MIMO

Wireless Channel Modeling: Back to Fundamentals

Simplified Wireless Communication Channel Model

When a wireless signal travels from a transmitter (Tx) to a receiver (Rx) it undergoes some changes. In simple terms the signal s(t) is scaled by a factor h(t) and noise n(t) is added at the receiver. Let’s take this discussion forward with a simple example. Suppose the Tx transmits one of two possible symbols, +1 or -1. In technical lingo this is called Binary Phase Shift Keying (BPSK). If the channel scaling factor is 0.1 we will either get a +0.1 or -0.1 at the Rx to which AWGN noise is added. The noise is random in nature (having a Gaussian distribution) but for simplicity we assume that it can have one of two values, +0.01 or -0.01.

Continue reading Wireless Channel Modeling: Back to Fundamentals

60 GHz Millimeter Wave Band – Seems Like a Free Lunch

Let us start by first listing down the advantages of the 60 GHz Millimeter Wave Band, a band spread between 57 GHz and 64 GHz. This unlicensed band was first released in the US in 2001 but with limited allowance for transmit power (EIRP of 40 dBm). Later on, in 2013, this limit was increased to allow for greater transmit power (EIRP of 82 dBm) and larger range. The higher EIRP can be achieved with an antenna gain of 51 dBi or higher (EIRP is simply the product of transmit power and antenna gain). But first the advantages:

  1. Unlicensed band means you do not have to pay for using the frequencies in this band.
  2. Wide bandwidth of 7 GHz allows high data rate transmissions. Remember Shannon Capacity Theorem?
  3. High atmospheric absorption resulting in greater path loss (up to 20 dB/km) and shorter range. This means lesser co-channel interference and higher reuse factor.
  4. Smaller antenna sizes allowing for multiple antennas to be put together in the form of an array providing high gain.
  5. This band is quite mature and electronic components are cheap and easily available.
Continue reading 60 GHz Millimeter Wave Band – Seems Like a Free Lunch

Path Loss at Millimeter Wave Frequencies

The mmWave Channel

It is well known that wireless signals at millimeter wave frequencies (mmWave) suffer from high path loss, which limits their range. In particular there are higher diffraction and penetration losses which makes reflected and scattered signals to be all the more important. Typical penetration losses for building materials vary from a few dBs to more than 40 dBs [1]. There is also absorption by the atmosphere which increases with frequency. But there are also some favorable bands where atmospheric losses are low (<1dB/km).

Continue reading Path Loss at Millimeter Wave Frequencies