All posts by Yasir Ahmed (aka John)

About Yasir Ahmed (aka John)

More than 20 years of experience in various organizations in Pakistan, USA and Europe. Worked as Research Assistant within Mobile and Portable Radio Group (MPRG) of Virginia Tech and was one of the first researchers to propose Space Time Block Codes for eight transmit antennas. The collaboration with MPRG continued even after graduating with an MSEE degree and has resulted in 12 research publications and a book on Wireless Communications. Worked for Qualcomm USA as an Engineer with the key role of performance and conformance testing of UMTS modems. Qualcomm is the inventor of CDMA technology and owns patents critical to the 5G and 4G standards.

KAY’s Single Frequency Estimator

As previously discussed, finding the frequency of a complex sinusoid embedded in noise is a classical problem in Signal Processing. The problem is compounded by the fact that number of samples available is usually quite small. So far, we have discussed Zero Crossing, FFT, MUSIC and ESPRIT methods of frequency estimation. Zero Crossing method is simplest of the above four but it can detect only one sinusoid at a time. Advantage of Zero Crossing method is that it is computationally not that complex. It does not require complex matrix manipulations as some of the other methods do.

Continue reading KAY’s Single Frequency Estimator

A Comparison of FFT, MUSIC and ESPRIT Methods of Frequency Estimation

As discussed in previous posts it is frequently required in communications and signal processing to estimate the frequency of a signal embedded in noise and interference. The problem becomes more complicated when the number of observations (samples) is quite limited. Typically, the resolution in the frequency domain is inversely proportional to the window size in the time domain. Sometimes the signal is composed of multiple sinusoids where the frequency of each needs to be estimated separately. Simple techniques such as Zero Crossing Estimator fail in such a scenario.  Even some advanced techniques such as MATLAB function “pwelch” fail to distinguish closely spaced sinusoids.

Continue reading A Comparison of FFT, MUSIC and ESPRIT Methods of Frequency Estimation

Frequency Estimation Using Zero Crossing Method

A sinusoidal signal is the most fundamental type of signal that exists in communication systems, power systems, navigation systems etc. It is controlled by three parameters which are the amplitude, phase and frequency. The last two, that is phase and frequency, are interconnected. As discussed in my previous post Instantaneous Frequency (IF) is nothing but the rate of change of phase. This can be mathematically described as:

IF=Δφ/Δt

Continue reading Frequency Estimation Using Zero Crossing Method

Modeling Phase and Frequency Synchronization Error

Carrier phase or frequency synchronization is a common problem in wireless communication systems. These two problems are interrelated as instantaneous frequency is just the rate of change of phase. The problem of carrier frequency offset might appear due to one of two reasons. Either the oscillators at the transmitter and receiver are not aligned in the frequency domain or there is a Doppler shift introduced by the channel (remember that a moving object in the wireless environment introduces a Doppler shift). In the case of the former the frequency misalignment is given in parts per million (ppm). A typical value for commercially available oscillators is ±20 ppm. Assuming that there is maximum frequency error at both the transmitter and receiver the error increases to ±40 ppm. At 1GHz this translates to 40*1,000,000,000/1,000,000 = 40kHz.

Continue reading Modeling Phase and Frequency Synchronization Error

Index Modulation Explained

Wireless researchers are continuously exploring ways to increase the spectral efficiency (bits/sec/Hz) and energy efficiency (bits/Joule) of wireless communication systems [1]. Spectral efficiency can generally be improved by using larger constellations or by using multiple antennas at the transmitter and receiver, better known as MIMO. But increasing energy efficiency is not that straightforward. Let’s consider this in bit more detail.

Continue reading Index Modulation Explained

Reconfigurable Intelligent Surfaces Explained

Wireless channel is inherently unpredictable and this results in loss of information as it travels from the transmitter to the receiver. The main reason for this is that multiple copies of the wireless signal arrive at the receiver which sometimes add constructively and at other times destructively, causing deep fades. The deciding factor between signal copies (think of them as echoes) adding constructively or destructively is the relative phase. If the phases are aligned the signals add up but if the phases are not aligned, we get a fade (fades can be as deep as 60-80dB). Wireless engineers over the years have worked around this problem by using multiple antennas also called antenna arrays.

Continue reading Reconfigurable Intelligent Surfaces Explained

What is Energy Harvesting

Conventional battery powered systems can be impractical, expensive, or have negative environmental impacts. Energy harvesting (EH) offers a potential solution to these problems. Through ambient sources such as solar, vibrational, thermal, and RF, self-sustaining IoT devices can be designed. These devices can be easily implemented in wearables, medical implants, and infrastructure. Companies such as TI and ADI have developed power management systems for EH and consumer products already exist. These products continue to increase in efficiency and practicality every year.  

Continue reading What is Energy Harvesting

MSK Demodulation Using a Discriminator

It is widely believed that performance of non-coherent receivers is much worse than performance of coherent receivers in terms of Bit Error Rate (BER). Although this is true to some extent but as we show in this post the difference in performance is not that much in case of Minimum Shift Keying (MSK). In fact, there is only a difference of about one dB in an AWGN environment at high Signal to Noise Ratios (SNR). The difference is somewhat larger in flat fading environment but given the simplicity of implementation of a non-coherent receiver the trade-off might be worth it.
Continue reading MSK Demodulation Using a Discriminator

Orthogonal Minimum Shift Keying (OMSK)

Some Background

Before we delve deep into Minimum Shift Keying (MSK) and its performance in presence of co-channel interference the reader is advised to look at the following posts.

Post 1 – MSK BER performance in AWGN and flat fading environment when viewed as extension of BPSK

Post 2 – MSK Power Spectral Density and its BER performance in AWGN when viewed as a CPM

Post 3 – MSK BER Performance in AWGN and flat fading environment when viewed as a CPM

Co-channel interference is a phenomenon widely encountered in wireless communication systems and the main reason for that is frequency reuse, which allows the same frequency band to be used over and over again in geographically non-contiguous areas. GSM and other wireless communication systems, using MSK modulation, suffer from the same problem. This has been widely studied in the literature and interference rejection techniques have been proposed. The worst case is one where the power of both the signals (wanted signal and interference) is almost the same and there is no frequency or phase offset. 
Continue reading Orthogonal Minimum Shift Keying (OMSK)

MSK Bit Error Rate in Rayleigh Fading

I - In the previous two posts we discussed MSK performance in an AWGN channel, first presenting the MATLAB/OCTAVE Code for one sample per symbol case [Post 1], and then extending it to the more general case of multiple samples per symbol [Post 2]. This helps us visualize the underlying beauty of Continuous Phase Modulation (CPM) which reduces out of band energy and consequently lowers Adjacent Channel Interference (ACI). We also briefly touched upon the case of MSK in Rayleigh fading, but did not go into the details. So here we take a deeper dive.
Continue reading MSK Bit Error Rate in Rayleigh Fading