Category Archives: Standards

GSM, WCDMA, LTE, 5G.

Sizing Up a Solar System for a Cellular Base Station

Many operators are thinking of moving from the main grid to alternative energy sources such as wind and solar. This is especially true in third world countries where electricity is not available 24/7 and is also very expensive. This has forced operators to switch their base stations to diesel generators (which is also a costly option).

In this article we do a rough estimation of the size a solar system required to run a cellular base station. We start with the assumption that 20 Watts of power are transmitted from a single antenna of base station. For a 3 sector site there are 3 antennas giving us total transmitted power of 60 Watts. Now if 50% of the power is lost in cables and connections we would have to boost up the transmitted power to 120 Watts.

We know that power amplifiers are highly in-efficient (depending upon the load) and a large amount of power is lost in this stage. So we assume an efficiency of 12 % giving us a total input power of 1000 Watts. Another 500 Watts are given to Air Conditioning (200 W), Signal Processing (150 W) and Rectifier (150 W). So the combined AC input to the base station is 1500 Watts. Now we turn our attention to sizing up the solar system.

If we assume that the BS is continuously consuming 1500 Watts over a 24 hour period we have a total energy consumption of  36 kWh. If the solar panels receive peak sun hours of 5 hours/day we would require solar panels rated at 7200 Watts. This could mean 72 solar panels of 100 Watts each or 36 solar panels of 200 Watts each or any other combination. It must be noted that we have not considered any margins for cloudy days when peak sun hours would be reduced. Also, we have not considered any reduction in power consumption when there is no load (or very less load) on the BS.

Next we calculate the amount of batteries required. We assume that the batteries are rated at 200 AH and 12 V. This gives us a total energy storage capacity per battery of 2.4 kWh. So the number of batteries required is calculated as 36 kWh/2.4 kWh = 15. It must be noted that some of the energy would be consumed in real-time and the actual number of batteries required would be lesser. Furthermore we would need an inverter of at least 1500 Watts and charge controller of 125 Amps.

 

Does Shannon Capacity Increase by Dividing a Frequency Band into Narrow Bins

Somebody recently asked me this question “Does Shannon Capacity Increase by Dividing a Frequency Band into Narrow Bins”. To be honest I was momentarily confused and thought that this may be the case since many of the modern Digital Communication Systems do use narrow frequency bins e.g. LTE. But on closer inspection I found that the Shannon Capacity does not change, in fact it remains exactly the same. Following is the reasoning for that.

Shannon Capacity is calculated as:

C=B*log2(1+SNR)

or

C=B*log2(1+P/(B*No))

Now if the bandwidth ‘B’ is divided into 10 equal blocks then the transmit power ‘P’ for each block would also be divided by 10 to keep the total transmit power for the entire band to be constant. This means that the factor P/(B*No) remains constant. So the total capacity for the 10 blocks would be calculated as:

C=10*(B/10)*log2(1+P/(B*No))

So the Shannon Capacity for the entire band remains the same.

PS: The reason for the narrower channels is that for a narrow channel the channel appears relatively flat in the frequency domain and the process of equilization is thus simplified (a simple multiplication/division would do).

Note: ‘No’ is the Noise Power Spectral Density and ‘B*No’ is the Noise Power.

M-QAM Bit Error Rate in Rayleigh Fading

We have previously discussed the bit error rate (BER) performance of M-QAM in AWGN. We now discuss the BER performance of M-QAM in Rayleigh fading. The one-tap Rayleigh fading channel is generated from two orthogonal Gaussian random variables with variance of 0.5 each. The complex random channel coefficient so generated has an amplitude which is Rayleigh distributed and a phase which is uniformly distributed. As usual the fading channel introduces a multiplicative effect whereas the AWGN is additive.

The function “QAM_fading” has three inputs, ‘n_bits’, ‘M’, ‘EbNodB’ and one output ‘ber’. The inputs are the number of bits to be passed through the channel, the alphabet size and the Energy per Bit to Noise Power Spectral Density in dB respectively whereas the output is the bit error rate (BER).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FUNCTION THAT CALCULATES THE BER OF M-QAM IN RAYLEIGH FADING
% n_bits: Input, number of bits
% M: Input, constellation size
% EbNodB: Input, energy per bit to noise power spectral density
% ber: Output, bit error rate
% Copyright RAYmaps (www.raymaps.com)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function[ber]= QAM_fading(n_bits, M, EbNodB)
% Transmitter
k=log2(M);
EbNo=10^(EbNodB/10);
x=transpose(round(rand(1,n_bits)));
h1=modem.qammod(M);
h1.inputtype='bit';
h1.symbolorder='gray';
y=modulate(h1,x);

% Channel
Eb=mean((abs(y)).^2)/k;
sigma=sqrt(Eb/(2*EbNo));
w=sigma*(randn(n_bits/k,1)+1i*randn(n_bits/k,1));
h=(1/sqrt(2))*(randn(n_bits/k,1)+1i*randn(n_bits/k,1));
r=h.*y+w;

% Receiver
r=r./h;
h2=modem.qamdemod(M);
h2.outputtype='bit';
h2.symbolorder='gray';
h2.decisiontype='hard decision';
z=demodulate(h2,r);
ber=(n_bits-sum(x==z))/n_bits
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64-QAM Constellation

M-QAM Bit Error Rate in Rayleigh Fading
M-QAM Bit Error Rate in Rayleigh Fading

The bit error rates of four modulation schemes 4-QAM, 16-QAM, 64-QAM and 256-QAM are shown in the figure above. All modulation schemes use Gray coding which gives a few dB of margin in the BER performance. As with the AWGN case each additional bit per symbol requires about 1.5-2 dB in signal to ratio to achieve the same BER.

Although not shown here similar behavior is observed for higher order modulation schemes such as 1024-QAM and 4096-QAM (the gap in the signal to noise ratio for the same BER is increased to about 5dB).

Lastly we explain some of the terms used above.

Rayleigh Fading

Rayleigh Fading is a commonly used term in simulation of Digital Communication Systems but it tends to differ in meaning in different contexts. The term Rayleigh Fading as used above means a single tap channel that varies from one symbol to the next. It has an amplitude which is Rayleigh distributed and a phase which is Uniformly distributed. A single tap channel means that it does not introduce any Inter Symbol Interference (ISI). Such a channel is also referred to as a Flat Fading Channel. The channel can also be referred to as a Fast Fading Channel since each symbol experiences a new channel state which is independent of its previous state (also termed as uncorrelated).

Gray Coding

When using QAM modulation, each QAM symbol represents 2,3,4 or higher number of bits. That means that when a symbol error occurs a number of bits are reversed. Now a good way to do the bit-to-symbol assignment is to do it in a way such that no neighboring symbols differ by more than one bit e.g. in 16-QAM, a symbol that represents a binary word 1101 is surrounded by four symbols representing 0101, 1100, 1001 and 1111. So if a symbol error is made, only one bit would be in error. However, one must note that this is true only in good signal conditions. When the SNR is low (noise has a higher magnitude) the symbol might be displaced to a location that is not adjacent and we might get higher number of bits in error.

Hard Decision

The concept of hard decision decoding is important when talking about channel coding, which we have not used in the above simulation. However, we will briefly explain it here. Hard decision is based on what is called “Hamming Distance” whereas soft decision is based on what it called “Euclidean Distance”. Hamming Distance is the distance of a code word in binary form, such as 011 differs from 010 and 001 by 1. Whereas the Euclidean distance is the distance before a decision is made that a bit is zero or one.  So if the received sequence is 0.1 0.6 0.7 we get a Euclidean distance of 0.8124 from 010 and 0.6782 from 001. So we cannot make a hard decision about which sequence was transmitted based on the received sequence of 011. But based on the soft metrics we can make a decision that 001 was the most likely sequence that was transmitted (assuming that 010 and 001 were the only possible transmitted sequences).

M-QAM Bit Error Rate in AWGN

Quadrature Amplitude Modulation has been adopted by most wireless communication standards such as WiMAX and LTE. It provides higher bit rates and consequently higher spectral efficiencies. It is usually used in conjunction with Orthogonal Frequency Division Multiplexing (OFDM) which provides a simple technique to overcome the time varying frequency selective channel.

We have previously discussed the formula for calculating the bit error rate (BER) of QAM in AWGN. We now calculate the same using a simple Monte Carlo Simulation.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FUNCTION THAT CALCULATES THE BER OF M-QAM IN AWGN
% n_bits: Input, number of bits
% M: Input, constellation size
% EbNodB: Input, energy per bit to noise power spectral density
% ber: Output, bit error rate
% Copyright RAYmaps (www.raymaps.com)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[ber]= QAM_AWGN(n_bits, M, EbNodB)

% Transmitter
k=log2(M);
EbNo=10^(EbNodB/10);
x=transpose(round(rand(1,n_bits)));
h1=modem.qammod(M);
h1.inputtype='bit';
h1.symbolorder='gray';
y=modulate(h1,x);

% Channel
Eb=mean((abs(y)).^2)/k;
sigma=sqrt(Eb/(2*EbNo));
w=sigma*(randn(1,n_bits/k)+1i*randn(1,n_bits/k));
r=y+w';

% Receiver
h2=modem.qamdemod(M);
h2.outputtype='bit';
h2.symbolorder='gray';
h2.decisiontype='hard decision';
z=demodulate(h2,r);
ber=(n_bits-sum(x==z))/n_bits
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64-QAM Constellation in AWGN

The above function basically has three inputs and one output. The inputs are the number of bits to be passed through the channel, the size of the constellation and the signal to noise ratio in dB. The output is the bit error rate (BER). The simulation can be divided into three section namely the transmitter, the channel and the receiver. In this simulation we have used Gray coding which gives us about a dB of improvement at low to medium signal to noise ratio.

M-QAM Bit Error Rate in AWGN
M-QAM Bit Error Rate in AWGN

As seen above the BER obtained through our simulation matches quite well with the BER obtained through the theoretical formula. Each additional bit per symbol required about 2dB extra in signal to noise ratio to achieve the same bit error rate.

Lastly we explain some of the terms used above.

AWGN

All wireless receivers suffer from thermal noise which is a function of absolute temperature and bandwidth of the receiver. This noise is added to the received signal and makes detection of weak signals a major challenge. Just to given you an idea typical GSM receivers have a noise floor of -113 dBm. Therefore, if the received signal has a power of -100 dBm we get a signal to noise ratio (SNR) of 13 dB. In simulation this noise is usually modeled as a Gaussian Random Process. It is additive, as opposed to channel impairments which are multiplicative and has a flat spectrum (thus called White Noise).

Gray Coding

When using QAM modulation, each QAM symbol represents 2,3,4 or higher number of bits. That means that when a symbol error occurs a number of bits are reversed. Now a good way to do the bit-to-symbol assignment is to do it in a way such that no neighboring symbols differ by more than one bit e.g. in 16-QAM, a symbol that represents a binary word 1101 is surrounded by four symbols representing 0101, 1100, 1001 and 1111. So if a symbol error is made, only one bit would be in error. However, one must note that this is true only in good signal conditions. When the SNR is low (noise has a higher magnitude) the symbol might be displaced to a location that is not adjacent and we might get higher number of bits in error.

Hard Decision

The concept of hard decision decoding is important when talking about channel coding, which we have not used in the above simulation. However, we will briefly explain it here. Hard decision is based on what is called “Hamming Distance” whereas soft decision is based on what it called “Euclidean Distance”. Hamming Distance is the distance of a code word in binary form, such as 011 differs from 010 and 001 by 1. Whereas the Euclidean distance is the distance before a decision is made that a bit is zero or one.  So if the received sequence is 0.1 0.6 0.7 we get a Euclidean distance of 0.8124 from 010 and 0.6782 from 001. So we cannot make a hard decision about which sequence was transmitted based on the received sequence of 011. But based on the soft metrics we can make a decision that 001 was the most likely sequence that was transmitted (assuming that 010 and 001 were the only possible transmitted sequences).

Inside Qualcomm Snapdragon S4

We have previously looked at the antennas inside a cell phone. Now we look at another important component of a cell phone; the mobile station modem (MSM). One of the most popular MSM in cell phones today is the Qualcomm Snapdragon S4. The details of this MSM are given in the table below.

Qualcomm Snapdragon S4
Qualcomm Snapdragon S4

As can be seen from the above table this small chipset (can easily fit on a fingertip) packs a punch as far as processing power is concerned. It supports a number of wireless standards from GSM/GPRS to LTE and from CDMA 2000 to TD-SCDMA. One of its close competitors is the NVIDIA Tegra 3 which has four ARM Cortex A9 cores (compared to Snapdragon’s two).

Qualcomm Snapdragon – S4

Antennas on Samsung Galaxy S

We have previously discussed the theory of Planar Inverted F Antennas (PIFA), now let us look at a practical example. Shown below is the rear view of a Samsung Galaxy S phone with six antennas. The description of these antennas is given below.

Samsung Galaxy Internal View
Samsung Galaxy Internal View

1. 2.6 GHz WiMAX Tx/Rx Antenna

2. 2.6 GHz WiMAX Antenna Rx Only (as a diversity antenna)

3. WiFi/Bluetooth Tx/Rx Antenna

4. Cell/PCS CDMA/EVDO Tx/Rx Antenna

5. Cell/PCS CDMA/EVDO Rx Only (as a diversity antenna)

6. GPS Antenna Rx Only

The figure above shows the top conducting plane of the PIFAs. The bottom conducting plane (ground plane) is one large plane that extends throughout the length and breadth of the phone.