Shannon Capacity of LTE (Effective)

In the previous post we calculated the Shannon Capacity of LTE as a function of bandwidth. We now calculate the capacity as a function of SNR (bandwidth fixed at 20MHz and signal power varied). We also use the concept of effective bandwidth to get a more realistic estimate of the capacity. The modified Shannon Capacity formula is given as:

C=B_eff*log2(1+SNR)

where

B_eff=Bandwidth*eff1*eff2*eff3*eff4

eff1=0.9=due to adjacent channel leakage ratio and practical filter issues

eff2=0.93=due to cyclic prefix

eff3=0.94=due to pilot assisted channel estimation

eff4=0.715=due to signalling overhead

B_eff=0.57*B

Therefore

C=0.57*B*log2(1+SNR)

LTE Capacity

Note: This is the capacity in a SISO channel with no fading.

Author: John (YA)

John has over 15 years of Research and Development experience in the field of Wireless Communications. He has worked for a number of companies around the world including Qualcomm Inc. USA. He has an MS in Electrical Engineering from Virginia Tech USA and has published his work in international journals and conferences.

0.00 avg. rating (0% score) - 0 votes

3 thoughts on “Shannon Capacity of LTE (Effective)

  1. Hello ,
    How we can calculate the inter-site interference in LTE for a user on the edge cell ? if we consider only interference from the first tier cells only , if we have a target bit rate for cell edge user ,we need to calculate the noise and interference to get SINR and to calculate the coverage right?

    Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *