Category Archives: Standards

Open Signal Coverage Maps for Pakistan

Open Signal is a mobile application that collects the data about your wireless network (2G/3G/4G) and generates coverage maps and host of other reports. The data is collected in the background while the user is busy in his daily routines. But data can also be collected on the request of the user. This is much better than drive testing since the data is collected in real life scenarios and on thousands of different devices that are in use.

The app works while the user is indoor or outdoor, at rest or in motion, on land or on water, at sea level or on a mountain, in dry weather or in rain. Basically anywhere and anytime there are wireless signals available. There are currently 20 million users of the app (both Android and iOS combined) and this number is increasing. In Pakistan all major networks are supported including Jazz, Telenor, Zong and Ufone (both 2G/3G and 4G networks are supported).

JAZZ Islamabad Coverage Map

Telenor Islamabad Coverage Map

Zong Islamabad Coverage Map

Ufone Islamabad Coverage Map

BER for BPSK-OFDM in Frequency Selective Channel

OFDM Tx-Rx Block Diagram

As the data rates supported by wireless networks continue to rise the bandwidth requirements also continue to increase (although spectral efficiency has also improved). Remember GSM technology which supported 125 channels of 200KHz each, which was further divided among eight users using TDMA. Move on to LTE where the channel bandwidth could be as high as 20MHz (1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz are standardized).

This advancement poses a unique challenge referred to as frequency selective fading. This means that different parts of the signal spectrum would see a different channel (different amplitude and different phase offset). Look at this in the time domain where the larger bandwidth means shorter symbol period causing intersymbol interference (as time delayed copies of the signal overlap on arrival at the receiver).

The solution to this problem is OFDM that divides the wideband signal into smaller components each having a bandwidth of a few KHz. Each of these components experiences a flat channel. To make the task of equalization simple a cyclic prefix (CP) is added in the time domain to make the effect of fading channel appear as circular convolution. Thus simplifying the frequency domain equalization to a simple division operation.

Shown below is the Python code that calculates the bit error rate (BER) of BPSK-OFDM which is the same as simple BPSK in a Rayleigh flat fading channel. However there is a caveat. We have inserted a CP which means we are transmitting more energy than simple BPSK. To be exact we are transmitting 1.25 (160/128) times more energy. This means that if this excess energy is accounted for the performance of BPSK-OFDM would be 1dB (10*log10(1.25)) worse than simple BPSK in Rayleigh flat fading channel.


  1. Although we have shown the channel as a multiplicative effect in the figure above, this is only true for a single tap channel. For a multi-tap channel (such as the one used in the code above) the effect of the channel is that of a filter which performs convolution operation on the transmitted signal.
  2. We have used a baseband model in our simulation and the accompanying figure. In reality the transmitted signal is upconverted before transmission by the antennas.
  3.  The above model can be easily modified for any modulation scheme such as QPSK or 16-QAM. The main difference would be that the signal would have a both a real part and an imaginary part, much of the simulation would remain the same. This would be the subject of a future post. For a MATLAB implementation of 64-QAM OFDM see the following post (64-QAM OFDM).
  4. Serial to parallel and parallel to serial conversion shown in the above figure was not required as the simulation was done symbol by symbol (one OFDM symbol in the time domain represented 128 BPSK symbols in the frequency domain).
  5. The channel model in the above simulation is quasi-static i.e. it remains constant for one OFDM symbol but then rapidly changes for the next, without any memory.

Rayleigh Fading Envelope Generation – Python

When wireless signals travel from a transmitter to a receiver they do so after reflection, refraction, diffraction and scattering from the environment. Very rarely is there a direct line of sight (LOS) between the transmitter and receiver. Thus multiple time delayed copies of the signal reach the receiver that combine constructively and destructively. In a sense the channel acts as an FIR (finite impulse response) filter. Furthermore since the transmitter or receiver may be in motion the amplitude and phase of these replicas varies with time.

There are several methods to model the amplitude and phase of each of these components. We look at one method called the “Smiths Fading Simulator” which is based on Clark and Gans model. The simulator can be constructed using the following steps.

1. Define N the number of Gaussian RVs to be generated, fm the Doppler frequency in Hz, fs the sampling frequency in Hz, df the frequency spacing which is calculated as df=(2*fm)/(N-1) and M total number of samples in frequency domain which is calculated as M=(fs/df).
2. Generate two sequences of N/2 complex Gaussian random variables. These correspond to the frequency bins up to fm. Take the complex conjugate of these sequences to generate the N/2 complex Gaussian random variables for the negative frequency bins up to -fm.
3. Multiply the above complex Gaussian sequences g1 and g2 with square root of the Doppler Spectrum S generated from -fm to fm. Calculate the spectrum at -fm and +fm by using linear extrapolation.
4. Extend the above generated spectra from -fs/2 to +fs/2 by stuffing zeros from -fs/2 to -fm and fm to fs/2. Take the IFFT of the resulting spectra X and Y resulting in time domain signals x and y.
5. Add the absolute values of the resulting signals x and y in quadrature. Take the absolute value of this complex signal. This is the desired Rayleigh distributed envelope with the required temporal correlation.

The Matlab code for generating Rayleigh random sequence with a Doppler frequency of fm Hz is given below.


Eclipse 1.0 – A Paradigm Shift in RF Planning

NEW: Simulation of a Moving Transmitter (such as a car)

NEW: Simulation of a Moving Transmitter (such as a pedestrian)

Radio frequency planning is an essential component of network planning, roll-out, up-gradation, expansion etc. Several methods can be adopted for this from something as simple as free space models, empirical path loss models to the significantly more complicated, time consuming and expensive drive testing. Drive testing gives very accurate results but these results can be rendered useless by changing the position of an antenna or the tilt or transmit power of an antenna requiring another run in the field. One solution to this problem is ray-tracing which is very accurate but is usually considered to be very computationally expensive and of little practical value. But recent advances in computational power of machines coupled with efficient techniques have given a new lease of life to this method.

Eclipse is a near real-time simulation software for prediction of signal strength in urban areas. The software uses shooting and bouncing ray (SBR) method of ray tracing with 1 degree ray separation, 1 m step size and 9 interactions per ray path. The simulation parameters can be varied according to the resolution required. The code is highly optimized to give results in shortest possible time. It is especially useful for network planning of ultra-dense wireless networks where a dense network of antennas is placed on lamp posts instead of telecom towers. Various frequency bands can be simulated, along with different antenna radiation patterns and MIMO configurations.

Helsinki 3D Building Data


Path Followed by a Single Ray


Paths Followed by Multiple Rays


Received Signal Strength Over Area of Interest

Note: If you would like to run a test simulation send us a request at

Udemy Course

• In this course you will learn the basic principles of wireless communications from 1G to 4G and beyond. You will learn about frequency reuse, capacity, channel coding, modulation and demodulation, OFDM, MIMO and host of other topics.

• This course is for you if you are a student and have just started learning about wireless communications or if you are a guy in the field who wants to get a better handle on the fundamental concepts of wireless communications.

Here is the link to the course.


Modified Young’s Fading Simulator

In the previous posts we had discussed generation of a correlated Rayleigh fading sequence using Smith’s method [1] and Young’s modification of Smith’s method [2]. The main contribution of Young was that he proposed a mechanism where the number of IDFTs was reduced by half. This was achieved by first adding two length N IID zero mean Gaussian sequences filtered by the filter F[k] and then performing the IDFT on the resulting complex sequence.

This was different to Smith’s method where the IDFT was performed simultaneously on two branches and then the outputs of these branches were added in quadrature to achieve the desired sequence with Rayleigh distributed envelope and Uniformly distributed phase. Another problem with Smith’s method was that the outputs of the two arms after performing IDFTs was assumed to be real which is not always the case in implementation and depends upon the combination of Doppler frequency (fm) and length of Gaussian sequence (N).

Young's Fading Simulator
Young’s Fading Simulator


Youngs Filter
Youngs Filter

Young’s technique is shown graphically in the above figure. Also shown is the definition of filter F[k] which depends upon N, fm and km (please note that the fm in the above equation is normalized by the sampling frequency fs). Here km = N*(fm/fs). We propose three modifications to Young’s technique which significantly reduces computation and at the same time maintains the statistical properties of the generated sequence. The modifications we propose are.

1. First modification has to do with the generated Gaussian sequence. It is observed that the filter F[k], at very high sampling rates, is mostly zero and there are very few points which have some non-zero value. So when we multiply the Gaussian sequence with the filter we mostly get zeros at the output. So we propose that the filter response in the frequency domain must be calculated first and the the Gaussian random sequence must be generated for only those points where the filter F[k] is non-zero e.g. for a sampling frequency of 7.68 MHz (standard sampling frequency for a BW of 5 MHz in LTE) and Doppler frequency of 70 Hz (corresponding to medium Doppler case in LTE) the filter F[k] has 99.9982% zeros in its frequency response and it would be a highly wasteful to calculate Gaussian RVs for all those values.

2. Secondly according to Clarke [3] the Doppler Spectrum measurements have “Marked disagreement at very low frequencies and at frequencies in the region of the sharp cut-off associated with the maximum Doppler frequency shift. At very low frequencies the spectral energy is always observed to be higher than that predicted by theory”. He goes on to add “The reason for this is that neither theoretical model takes into account the large scale variations in total energy which result from the changing topography between transmitter and mobile receiver”. This suggests that the Classical Doppler Spectrum might not be the best choice under all scenarios. This has also been noted in [4] where a flat fading model is evaluated in terms of its Level Crossing Rate and Average Fade Duration. Such a flat spectrum is especially suited to indoor scenarios as noted in [5] and [6].

We propose a filter that gives equal weight to all the frequencies up to the maximum Doppler frequency. So our filter is a box-type filter which applies a constant scaling factor to all the frequencies in the pass-band and zeros out all the frequencies in the stop-band. So in fact the Gaussian sequence that is generated in the in-phase arm may directly be added with the Gaussian sequence from the other arm without applying the frequency domain filter and then IDFT of the complex sequence is taken. We will look into the deviation from ideality  that this causes later.

3. The third modification that we propose is in the implementation of the IDFT. Here again we take into consideration that the complex sequence being fed to the IDFT is filled with zeros (as we noted earlier 99.9982% zeros for 7.68 MHz and even more for higher frequencies) so we can avoid a lot multiplications and summations. The IDFT is defined below and also given is our modification to it.

EquationsFurther improvement in computation time is achieved by implementing the above as a matrix multiplication. The matrix multiplication is implemented as H*X where H is the IDFT coefficients of size N x 2(km+1) and X is a vector of size 2(km+1) x 1 upon which the IDFT has to be performed.

Now let us look at the output sequence generated by using the above techniques. We consider the case of Medium Doppler Frequency of 70 Hz (EVA channel) as defined by LTE specifications. Sampling frequency is fixed at 10 kHz giving a normalized Doppler frequency of 0.007.  This was done due to limitation of memory on the machine. The author also experimented with a sampling frequency of 7.68 MHz but this did not yield enough samples for statistically accurate results. We did use a sampling frequency of 7.68 MHz for our bit error rate simulation which is shown in the end.

Rayleigh Fading Envelope fm=70Hz
Rayleigh Fading Envelope fm=70Hz
Distribution of Fading Envelope fm=70Hz
Distribution of Fading Envelope fm=70Hz

It is observed for fm=70 Hz the envelope of the output sequence using the proposed technique matches quite well with the envelope of the output sequence generated by the ideal filter proposed by Young. Also the phase and envelope of the sequence generated using the proposed technique has the desired distribution. Some of the other metrics that we can look at are the level crossing rate (LCR) and average fade duration (AFD) as well as the Auto Correlation of the real and imaginary parts of the complex sequence generated.

Parameter Young Modified
LCR (ideal) 48.1086 48.1086
LCR (sim) 48.1506 39.4348
AFD (ideal) 0.0018 0.0018
AFD (sim) 0.0018 0.0022

If we look at the results for LCR and AFD we see that the simulated results match reasonably well with the results predicted by theory. These results correspond to 100 snapshots of the fading sequence. It was important to take the average of several snapshots as results varied with each simulation run. Sometimes Young’s technique produced more accurate results while at other times the proposed technique was better. Again the limitations of computer memory and processing power dictated the length of the sequence that could be generated.

In general Young’s technique produced better results than our proposed technique. It was found that product of LCR and AFD for both cases matched quite well with the theoretical value. So the total time spent in a fade state per second was equal in both the cases. In the proposed method the duration of a single fading event was higher,  whereas the number of fading events per second was lower. This can be attributed to the fact that in our proposed technique higher weighting is given to lower frequency components and the fading sequence is smoothed out by these low frequency components. One technique to overcome this is spectral broadening as suggested by [4] but this is not the subject here and we postpone its discussion to another article.

Auto Correlation of Real Part fm=70Hz

Auto Correlation of Real Part fm=70Hz

Auto Correlation of Imaginary Part fm=70Hz
Auto Correlation of Imaginary Part fm=70Hz

The Auto Correlation of the real and imaginary parts of the generated sequences are also calculated for a Doppler frequency of 70 Hz. It is found that the Auto Correlation sequence for the two techniques matches quite well. However, the Auto Correlation sequence deviates from the theoretical value as calculated the by Bessel function of the first kind and zero order. Since we have used a flat spectral mask the Auto Correlation function resembles the sinc(x) function which is the same as zeroth order Spherical Bessel Function of the first kind (which is related to 1/2 order Bessel Function of the first kind).

It was found that when the Rayleigh fading sequence is generated by the program provided in Young’s thesis the shape of the Auto Correlation function depends upon the sampling frequency. At a normalized Doppler frequency of 0.05 and N=2^16 Young’s technique produces quite accurate results. We also measured the mean squared error (MSE) between the two Auto Correlations sequences and found it to be a function of the Normalized Doppler Frequency. It was found that as the Normalized Doppler Frequency was increased from 0.00007 to 0.0007 the MSE error dropped from 0.0277 to 0.0041. The relationship between the Normalized Doppler Frequency and MSE, for a fixed sequence length, seems to be resembling an exponential function. For more accurate results, at higher sampling frequencies, the number of samples would have to be increased considerably. In fact it was found that if the variable km (km=N*fm/fs) is maintained at around 20 the error between the two correlation sequences is less than 1% for all possible sampling rates.

MSE of Autocorrelation Sequence
MSE of Autocorrelation Sequence

We also compared the bit error rate (BER) performance of different QAM modulation schemes using both the techniques for fading envelope generation and found these to be matching quite well. A single tap was used which results in a flat fading channel. This is a simplistic channel model but it gives us some confidence that the proposed approach does have the desired statistical properties. A good test of a temporally correlated Rayleigh fading sequence is to test it on a system that implements interleavers and channel coders whose performance strongly depends upon factors such as the LCR and AFD e.g. a certain forward error correction (FEC) code might work well in high LCR and low AFD as this distributes out errors in different blocks and allows the code to correct them. In simulations done so far (not shown here) we have found that for a 1/2 rate convolutional encoder with Hard Viterbi Decoding the BER for the two schemes matches quite well. In general the results for correlated fading are much worse than uncorrelated fading.

BER of QAM fm=70Hz
BER of QAM fm=70Hz

In future we would also like to evaluate the bit error rate (BER) performance of an M-QAM OFDM system with Frequency Selective Rayleigh fading as described by the LTE fading channels EPA, EVA and ETU. This is probably a good scenario to compare the accuracy of the two techniques used to generate Rayleigh fading sequences above. One challenge in this regard is that the LTE channel taps are described in increments of 10 nsec whereas the LTE signal sampling rate is defined on a different scale (minimum Ts=32.5521 nsec corresponding to a sampling rate of 30.72 Msps). So we would have to do sample rate conversion to implement a time varying frequency selective Rayleigh fading channel.

[1] John I. Smith, “A Computer Generated Multipath Fading Simulation for Mobile Radio”, IEEE Transactions on Vehicular Technology, vol VT-24, No. 3, August 1975.

[2] David J. Young and Norman C. Beaulieu, “The Generation of Correlated Rayleigh Random Variates by Inverse Discrete Fourier Transform”, IEEE Transactions on Communications vol. 48 no. 7 July 2000.

[3] R. H. Clarke, A Statistical Theory of Mobile Radio Reception”, Bell Systems Technical Journal 47 (6), pp 957–1000, July 1968.

[4] Rosmansyah, Y.; Saunders, S.R.; Sweeney, P.; Tafazolli, R., “Equivalence of flat and classical Doppler sample generators,” Electronics Letters , vol.37, no.4, pp.243,244, 15 Feb 2001.

[5] JTC (Joint Technical Committee T1 RIP1.4 and TIA TR46.3.3/TR45.4.4 on Wireless Access): “Draft final report on RF channel characterization”. Paper no. JTC(AIR)/94.01.17-238R4, January 17, 1994.

[6] ETSI (European Telecommunications Standards Institute): “Universal mobile telecommunications system (UMTS); selection procedures for the choice of radio transmission technologies of the UMTS (UMTS 30.03 version 3.2.0)”. Technical Report, TR 101 112 V3.2.0 (1998-04),, 1998.