Category Archives: Random Thoughts

Omar Khayyam’s Solution to Cubic Equations

Omar Khayyam was a Muslim mathematician and poet of the 11th and 12th centuries (1048-1131). His poetic works known as Rubaiyat of Omar Khayyam were translated from Persian to English and made popular by Edward Fitzgerald in the late nineteenth century. In the field of mathematics his most valuable contribution was the solution he presented to the cubic equations using geometrical methods. Some of this was adapted from earlier works by Greeks but his compilation of the various cases and their solutions was most complete.

Lets assume that the cubic equation also known as the third degree equation (highest power of the unknown variable) is of the form:

x3+a2x=b

Khayyam’s method consisted of constructing a parabola with equation x2=ay and a circle with center (b/2a2,0) and radius b/2a2. Then the x-coordinate of the intersection of the circle and the parabola gives the solution to the cubic equation. The root found by this method is the real and positive root since the length of a line segment cannot be negative or imaginary. These cases (negative and imaginary roots) were not discussed by Khayyam and were worked out much later by other mathematicians. The MATLAB code for this geometrical construction is given below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Omar Khayyams Method to Find  
% the Roots of a Cubic Equation 
%
% Copyright RAYmaps 2017 (YA)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all

% Plot the parabola
a =5;
x =-5:0.01:5;
y =(x.^2)/a;
plot(x,y,'linewidth',4);
hold on

% Plot the circle
b =100;
d =b/(a.^2);
r =d/2;
t =0:pi/180:2*pi;
plot(r+r*cos(t), r*sin(t),'r', 'linewidth', 4);
hold off
axis([-5 5 -5 5], "square")
grid on
title('Khayyams Method to Solve Cubic Equations')
xlabel('x')
ylabel('y')

Omar Khayyam's Method for Solving Cubic Equations

Omar Khayyam’s Method for Solving Cubic Equations

Notes:

  1. For more on origins of geometrical methods see the following post on Al-Khwarizmi.
  2. For an interactive tool to understand the method of Omar Khayyam visit the following page.
  3. For a proof of validity of Khayyam’s method see the following page on Cornell website or see selected abstract below. Please note slightly different form of the equation where the term a2 has been replaced by a. This is just a constant term and either form works.

Proof of Khayyam's Method from Cornell

On the Origins of Snell’s Law (Ibn Sahl’s Law)

Most of intermediate Physics courses present Snell’s law of refraction in one form or another. But a little known mathematician with the name Ibn Sahl (c. 940–1000) found this law about 650 years before Snell (Willebrord Snellius c. 1580–1626). This mathematical expression was lost for centuries until until some scholars recently were able to dig it up from historical records. Even Ibn al-Haytham (author of Book of Optics or Kitab ul Manazir) who came to the fore a few years later did not recognize the brilliance of Ibn Sahl’s simple expression.

Ibn Sahl was aware that Greek’s knew that there was a relationship between the angle of incidence and angle of refraction of a ray traveling from one medium to the other. They thought that ratio of the two angles was a constant i.e. if the angle of incidence was doubled the angle of refraction also doubled. This also meant that the arcs formed by the two angles on a circle centered at the point of incidence were also directly related (in a linear relationship). But Ibn Sahl showed that this was incorrect.

Ibn Sahl showed that it was not the angles but the sine of the angles that were linearly related. We explain it with the help of the figure below. Imagine that a ray of light travels from air to a denser medium (such as water), then the ray bends towards the normal and angle of refraction is smaller than angle of incidence. According to Ibn Sahl the ratio of line segments l1 and l2 as shown in the figure is a constant. This in fact means that the two sines have a constant ratio and this is equal to refractive index of the second medium (n2) with refractive index of air almost equal to 1 (n1).

Ibn Sahl Law for Refraction
Ibn Sahl Law for Refraction
Ibn Sahl Formulation of the Problem
Ibn Sahl Formulation of the Problem

Ibn Sahl was not aware of the parameter ‘n’ defined as refractive index by later scientists. Also, as is known that for small angles, sine of the angle and angle itself are almost the same, so earlier scientists like Ptolemy might have been tricked into assuming that the angles are directly related. This can be understood by looking at the figure above. If the angle of incidence is continuously reduced, the angle of refraction would also decrease and the lengths of the two line segments in red (l1 and l2) would approach the lengths of the arcs that are formed between the ray and the normal.

Note: Roshdi Rashed found the Ibn Sahl text to have been dispersed in manuscripts in two different libraries, one in Tehran, and the other in Damascus. He reassembled the surviving portions, translated and published them as “Geometry and dioptric in the tenth century: Ibn Sahl, al-Quhi and Ibn al-Haytham”.

Ibn al-Haytham – The Father of Optics

Whenever we read about the history of optics or in general electromagnetics we hear two names again and again, these are James Clerk Maxwell and Heinrich Rudolf Hertz. The discoveries of these two gentlemen although very important to development of Physics were very recent (about 150 years old). But the history of optics is much older and the basics of this field were etched in stone about a 1000 years back. One of the people responsible for the early development of this field was Arab mathematician, astronomer, and physicist ibn al-Haytham (c. 965 – c. 1040).

Ibn al-Haytham in his book referred to as the Book of Optics (Kitāb al-Manāẓir) postulated that light travels in form of rays in straight lines and these rays are reflected by objects which makes these objects visible when the rays enter the human eye. Ibn al-Haytham rejected an earlier theory proposed by Ptolemy and widely accepted by the scholars of that time that light rays emanate from the human eye which makes objects visible. Ibn al-Haytham studied the phenomenon of reflection and refraction of rays of light in his laboratory (he studied lenses, experimented with different mirrors: flat, spherical, parabolic, cylindrical, concave and convex). He also used the Camera Obscura in his experiments to show that light rays travel in straight lines. He studied the working of the human eye and was able to make some valuable contributions.

Camera Obscura
Camera Obscura

Other than optics ibn al-Haytham made significant contributions to number theory, geometry, astronomy and natural philosophy. Ibn al-Haytham wrote more than 200 works on a wide range of subjects but most of his works are now lost. Only about 96 are known and about 55 have survived to some extent. Those related to the subject of light include The Light of the Moon, The Light of the Stars, The Rainbow and the Halo, Spherical Burning Mirrors, Parabolic Burning Mirrors, The Burning Sphere, The Shape of the Eclipse, The Formation of Shadows, Discourse on Light, as well as his masterpiece, Book of Optics. It was through Latin and Hebrew translations that most of his important work survived.

UNESCO declared 2015 the International Year of Light and ibn al-Haytham was dubbed as the ‘the father of optics’. This was to celebrate ibn Al-Haytham’s achievements in optics, mathematics and astronomy. In honor of him, the Aga Khan University (Pakistan) named its Ophthalmology endowed chair as “The Ibn-e-Haytham Associate Professor and Chief of Ophthalmology”. The crater Alhazen (latin form of his name) on the Moon is named in his honour, as is the asteroid 59239 Alhazen.

PS: An interesting story about ibn al-Haytham is that he proposed to build a dam on the Nile to restrict the flooding it caused but realized soon that it was impossible to solve this problem with the available resources. Ibn al-Haytham feigned madness so as to not upset the ruler (al-Hakim, the Fatimid caliph in Egypt). Legend has it that he was put into confinement in the city of Cairo near Al Azhar University and it is here that he worked on his theories of optics. Al Azhar University still survives today as one of the greatest and oldest university in the world.